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Abstract. The critical component of a collaborative project [1] between The
Australian National University (ANU) and Princeton Plasma Physics Laboratory
(PPPL) on constructing 3-D MHD equilibria, in a way fully compatible with the
existence of chaotic magnetic fields, is establishing the existence and stability of
good magnetic surfaces with irrational rotational transform that can sustain a
pressure jump. Physically, these would form electron transport barriers. The
existence of surfaces that satisfy force balance is quite well established [2] and
numerical implementations have already been done to confirm their existence.
However, the question of stability to displacements of the interface still has to be
investigated. It is of particular interest to study how high-n MHD stability relates
to the chaos theory limitations on existence [2]. In this project we adapt a theory
developed by Bernstein et al [4] for high-n MHD stability at an interface between a
vacuum magnetic field and a field-free plasma to the problem of general fields. We
study in particular the stability at the interface in the case close to zero magnetic
shear. We found a simple sufficient condition for high-n interface stability to
surface displacement: the interface is stable if all points of zero magnetic shear
have favorable curvature. We complete the theoretical approach by implementing
the results obtained on a test case.
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1. Introduction

The beginning of the 21st century is characterized by a strong increase in world

energy consumption, by fear of a new petrol crisis and by a growing preoccupation

with human influence on climate. All these elements induce an environment

extremely favorable for the development of new renewable energies. There is, in

particular, a big hope placed in nuclear fusion. It is expected to become one of the

main energy sources in the future.

The principle of the nuclear fusion reactors is to confine a plasma, i.e. a

quasineutral ionized gas, and to extract energy out of it. Two main types of machines

using toroidal magnetic field were conceived to achieve this objective : tokamaks and

stellarators.

A tokamak is a device that uses strong magnetic fields to confine the plasma.

It has an axisymmetric toroidal shape, as shown on figure 1. In a tokamak, the

magnetic field lines move around the torus in a helical fashion. This helical field is

generated by both a toroidal field (produced by electromagnets that surround the

torus) and a poloidal field (which results from a toroidal electric current that flows

inside the plasma). The plasma injected in such a reactor is generally made of a

mix of deuterium and tritium ions. The critical part of the concept is to manage to

gain energy by making these nuclei fuse.

The second most important type of fusion reactor, the stellarator, also uses

strong magnetic fields to confine the plasma. But this device differs from the

tokamak in the fact that there is no current driven through the plasma itself.

Furthermore, the stellarators are not azimuthally symmetric. As can be seen in

figure 4, their magnetic coils must have a more complex shape than that of the

tokamak, as they need to make the field lines helical.

A lot of interest and a lot of hope are placed in the new experimental devices,

such as the tokamak ITER (International Thermonuclear Experimental Reactor),

being constructed at the moment in France. But research still has a long way to

go before being able to construct a reactor that can produce electric energy at a

competitive price.

In parallel to the experimental research, theoreticians are very active to try

to understand the complex physics of plasma confinement. An important fraction

of the efforts of the theoreticians is, at the moment, concentrated on the study

of magnetohydrodynamic stability. Magnetohydrodynamic is a discipline that

describes the behaviour of an electrically conducting fluid in the presence of an

electromagnetic field. It is a theory of great interest in a lot of different fields like

the study of sunspots, terrestrial magnetism, gas discharges, auroras and interstellar

matter.
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Figure 1: Fusion device (tokamak) with A: the divertor B: the heating

system, C: the combustible supply, D: the vessel surrounded by the

magnetic coils, E: the lithium blanket, F: the electricity production [36]

In this work, we study three-dimensional MHD equilibria in a way fully

compatible with the existence of chaotic magnetic fields. We investigate the existence

and stability of good magnetic surfaces with irrational rotational transform1 that can

sustain a pressure jump. Physically, these would form electron transport barriers.

The existence of surfaces that satisfy force balance is quite well established [2].

However, the question of the stability to displacements of a 3D interface has not

previously been addressed (except for Bernstein et al [4] special case of β = ∞
sharp boundary).

In this paper, we first introduce the theoretical background necessary to

understand the problem. Section 2 gives a non-exhaustive overview of the studies

done so far on the stability at the interface in a multi-region plasma with a

discontinuous pressure profile. We compute the first and second variations of the

1the rotational transform is the number of poloidal transits (p) divided by the mean number of
toroidal transits (q) of a field line on a toroidal flux surface.
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Figure 2: Top : the complex coils of the stellarator W7X. Bottom: a

view inside the Japanese Large Helical Device (LHD)[37]

energy while applying a displacement in subsection 2.3 and present in details the

stability of pressure jump surface to short-wavelength modes in section 3. We

then focus on the stability at zero magnetic shear in sections 4 - 6 and finish by

implementing the results on a test case in 7.
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2. Theoretical review

2.1. Toroidal plasma equilibrium in 3 dimensions

A good way of modeling toroidal fusion plasma steady state [35] is to consider the

three following equations, in SI units:

∇p = J ×B (1)

∇×B = µ0J (2)

∇ ·B = 0 (3)

where the first one represents the force balance for the total pressure p, the second

is Ampère’s law and the third one is the Gauss’s law for magnetism. There are 2

main problems that arise in a 3D equilibrium:

• Magnetic islands form on rational flux surface. The field is chaotic around

magnetic islands and ergodically fills island separatrix region. Fortunately, not

all flux surfaces are destroyed.

• 3-dimensional equilibria have current singularities if ∇p 6= 0

In the present approach, the 3D MHD solvers are built on the premise that the

volume is foliated with toroidal magnetic flux surfaces (VMEC [31]), or adapt the

magnetic grid to compensate for proximity to low order rational surfaces (PIES [32]).

Unfortunately, these solvers cannot rigorously solve ideal MHD and the error usually

manifests as a lack of convergence [33]-[34]. Indeed, all experimentally realizable

devices encounter symmetry-breaking perturbations and it has been shown [9] that

the magnetic field lines are chaotic in a 3-dimensional device such as a tokamak or a

stellarator. In this paper we thus try to develop a theory that is structurally stable

against these symmetry-breaking perturbations.

2.2. Ideal and relaxed MHD multi-region plasma

Let us first recall here an important result of the Kolmogorov, Arnold and Moser

(KAM) theorem [11]. This theorem predicts that, in the case of symmetry-breaking

perturbations of the magnetic field, flux surfaces with a sufficiently irrational

rotational transform can exist.

Let us focus now on a self-consistent MHD equilibrium. In this case, it is

convenient to consider an equilibrium consisting of regions in which the magnetic

field is completely chaotic. These regions are separated by perfect flux surfaces, the

KAM barriers or interfaces (see figure 3).
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Figure 3: Nested plasma regions, Pi, separated by N toroidal interfaces,

Ii, and a fixed wall IN+1, for the case N = 3. [8]

As stated before, the flux surfaces form only at irrational rotational transform.

We consider a configuration where the pressure gradient ∇p is equal to zero

everywhere in the plasma, except for the interfaces with irrational rotational

transform where a pressure difference can be supported. This implies that we obtain

a step function for the pressure profile [7] where the pressure and rotational transform

steps are positioned at flux surface interfaces.

In regions of constant pressure, the magnetic field can be described using the

Beltrami equation

µB =∇×B (4)

Which implies that the relation

J ×B = 0 (5)

is verified if and only if we consider a force free field. If we now apply the divergence

operator on both sides of equation 4, we notice that the right-hand side vanishes

∇µ ·B + µ∇ ·B =∇ ·∇×B = 0 (6)

Using Maxwell’s equation

∇ ·B = 0 (7)
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we see that ∇µ = 0 and thus µ is constant on a field line. The only solution in an

ergodic region is thus µ = const everywhere. It can also be a particular solution

when B is not ergodic (NB: 3-dimensional effects cause chaotic regions even without

turbulence).

In the Multi-region stepped-pressure-profile model, we obtain Beltrami

magnetic fields in every region, with different µi values in each of them. The Beltrami

equation is also used by Taylor [12] arising from his relaxed-MHD variational

principle for equilibrium of plasmas that undergo a strongly turbulent phase.

Taylor [12] looked at the relaxation of a plasma that has passed through a phase

of strong global overlap of magnetic islands. This overlap of magnetic islands then

leads the system to a minimum energy state [17], induced by tearing modes.

Taylor’s model was first developed to study strongly turbulent reversed field

pinches. But tokamak and stellarator are much more quiescent systems than the

reversed field pinches. In these two devices, global island overlap does not occur.

The relaxation is thus, at worst, local. When the rotational transform is strongly

irrational, island overlap is suppressed and these regions act as robust ideal MHD

barriers between the Taylor relaxed states. This leads to the expected equilibria

with stepped pressure profile. The pressure jump across the barrier interfaces is

counterbalanced by the corresponding magnetic field jumps, which may or may not

include jumps in rotational transform.

Taylor’s studies show that the main consequence of any small departure from

perfect conductivity is that topological properties of the magnetic field are no longer

preserved. As a consequence, lines of force may break and coalesce. He showed that

during the violent phase of the diffuse pinch, resistivity, microturbulence, inertia

or some other departure from perfect conductivity generate a relaxation of the

topological constraints. Taylor describes the evolution of a magnetic field in a

conducting fluid in a toroidal vessel, in a situation when the resistivity and viscosity

are supposed to be small.

The turbulence, allied with small resistivity, allows the plasma to access to

a particular minimum energy state in a time very short compared with the usual

resistive diffusion time. This is this process that is called plasma relaxation. The

system relaxes to the state of lowest energy compatible with the conservation of the

total magnetic helicity. The total toroidal magnetic flux should also be conserved.

The wall that encircles the plasma is considered as a magnetic surface too. This

allows us to use the Beltrami equation for the vacuum as well. The relaxation process

involves the reconnection of magnetic field lines. This is an interesting example of

the self-organization of a plasma. This relaxation process can be observed in many

different laboratory systems and even in astrophysical plasma [12].

As we have mentioned before, a small departure from perfect conductivity can
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make the lines of force break and coalesce. It means that the integral of the scalar

product between the magnetic field and the magnetic vector potential
∫
A ·B is not

invariant for each line of force. Note that here we have used the vector potential A

defined by

B =∇×A (8)

whereA is assume to be a differentiable and single-valued function of position. Even

if
∫
A · B is not invariant for each line of force, the changes in the field topology

are only accompanied by very small changes in the field itself. The integral
∫
A ·B

over all the field lines will be almost unchanged as long as departures from perfect

conductivity are small and that is why
∫
A ·B can be taken as a good invariant on

the total volume, even if it is varying on each flux tube [20].

As the plasma is assumed to have a high conductivity, both the temperature

and the density are required to be high [16]. But this assumption is in contradiction

with the cooling by the wall, and this effect is worsened by the drainage along the

magnetic field lines leading to the wall. Unfortunately, such field lines are always

present because the assumption that the wall is a magnetic surface cannot totally

be met in real experiments.

Further research on the use of RXMHD (Relaxed Magnetohydrodynamics) to

model plasmas with magnetic-field-line chaos were undertaken in the last years.

Hole et al [7] already considered a periodic cylindrical model in which nested flux

surfaces exist everywhere. They show that analytic solutions for the magnetic field

can be computed when the pressure is constant. They used a variational treatment

to construct equilibrium solutions and confirmed previous results from Kaiser and

Uecker [13]: stable plasmas can exist in the case of a single-interface configuration if

there is a jump in the rotational transform at the plasma-vacuum interface. This can

be shown analytically for large n. Hole et al compared the stability of a pressureless

plasma with only one interface to a plasma with two interfaces in the limit when

the two interfaces became arbitrarily close one to the other. Both plasmas have the

same net jump in the rotational transform. Hole et al found that the two-interface

plasma was unstable even when the single-interface plasma was not. Since the single

interface models a physical barrier of finite thickness (modelled by the two ι barriers),

this suggests that rotational transform jumps should be avoided.

Another point worth being mentioned is that, in the model, the current density

must be infinite at any interface where there is a pressure jump. But this is

unphysical in a real plasma. Mills et al [6] argued that this paradox is due to the

assumption of a relaxed-MHD region between the coalescing interfaces, which allows

a tearing instability to occur. The single-interface configuration case can instead be

compared to a plasma containing a thin but finite ideal region, with constraints on
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Figure 4: Nested plasma regions, Pi, separated by N toroidal interfaces,

Ii, and a fixed wall IN+1, for the case N = 3. [39]

the helicity of every field line. Mills et al [6] tried to remove the singularity in the

current density by considering the pressure and magnetic field to vary continuously

between the values on each side of the interface. They showed that if the interface

is resolved as an ideal region of non-zero width, the rotational transform profile ι(r)

may pass through ideal resonances. The stability analysis must thus consider the

structure of the pressure profile in the barrier in the limit that it is spatially resolved.

2.3. RXMHD multi-interfaces plasmas: first and second energy variation

We consider a MHD model of an N -interface plasma as presented on figure 3. Our

system comprises N nested plasma regions surrounded by a vacuum region and

enclosed by a perfectly conducting wall. We denote Pi the different plasma regions,

and V the vacuum region. Each plasma region Pi is encased by the interface Ii.

The perfectly conducting wall W surrounds the vacuum region. The interface is a

magnetic surface and the magnetic fluxes through any loops in I or W are conserved.

We utilize a variational approach to study the equilibrium and investigate

stability. The potential energy (the sum of the thermal and the magnetic energy) of

an N -region plasma, where each region is described by either ideal or relaxed MHD,

can be written as

Utot =
N∑
i=1

(
Ui +

∫
Pi

B ·B
2µ0

dτ 3

)
+

∫
V

B ·B
2µ0

dτ 3 (9)

with

Ui =

∫
Pi

pi
γ − 1

dτ 3 (10)
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In MRXMHD (multi-region relaxed MHD), the interface Ii is assumed to be

impermeable to the heat and mass fluxes. All variations are also considered to be

slow compared with relaxation timescales. The mass and the entropy are conserved

within a plasma region with constant pressure pi. The potential Energy Utot has to

be minimized under two different constraints: the ideal gas law:

piV
γ
i = const (11)

and the magnetic helicity constraint:

HPi =
1

2µ0

∫
Pi

A ·Bdτ 3 = const (12)

The mass-entropy [1] (ideal gas) conservation constraint can be expressed in the

following way [13]

Mi =

∫
Pi

d3τp
1/γ
i const (13)

This identity is obtained from the relation for an isentropic gas

S =
pi
ργ

= const (14)

where ρ denotes the mass density.

Let us now consider the 2 following conditions that hold at a fluid interface.

n× JEK = n · v JBK (15)

n · JBK = 0 (16)

where E is the electric field, B the magnetic field, v the fluid velocity, n the outward

pointing unit normal vector and where JXK := X
∣∣∣
Pi+1

− X
∣∣∣
Pi

denotes the jump of

a quantity X across Ii. We use the two equations 15-16 and introduce the vector

potential A

E =
∂A

∂t
(17)

B =∇×A (18)

We then introduce the perturbing magnetic field b

b =∇× (ξ ×B) (19)

in P , which can be represented by

b =∇× a (20)

in V, where a is the perturbed vector potential. Comparing 19 and 20, we notice

that we can make the gauge choice

a = ξ ×B (21)
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This choice, called the “Newcomb gauge” in Mills et al [6], was shown to

be appropriate in both ideal and relaxed MHD, the only difference being the

continuation through a mode rational surface. Note that in this paper, the

equilibrium quantities are written using capital letters while the perturbations are

given by lower case letters. The boundary conditions are then given by

n× a± + ξB± = 0 (22)

In the previous expression, we used the displacement vector ξ which is determined

by

r = r0 + ξ (23)

where r is the location of the fluid element at time t, r0 the initial location of the

fluid element and we define ξ as

ξ = ξ · n (24)

Let us now cross equation 22 with the normal vector n. We obtain

n× (n× a±) + ξn×B± = 0 (25)

which gives the relation

−[a± − n(n · a±)] + ξn×B± = 0 (26)

and thus

−a±tgt = ξn×B± (27)

We then follow Spies et al [16] and introduce the functional

W =
N∑
i=1

MPi +MV −
1

2

N∑
i=1

µiHPi (28)

where HPi is the helicity and µi are Lagrangian multipliers. The terms MPi and MV

are given by

MPi =

∫
Pi

d3τ
1

2
|∇×A|2 (29)

MV =

∫
V

d3τ
1

2
|∇×A|2 (30)

The constraint of fixed helicity HPi is observed by varying W instead of Utot. Note

that we only consider the magnetic energy and not the thermal energy for the

variational approach. We expand W [5] to second order in perturbations from its

equilibrium value:

W = W0 + δW +
1

2
δ2W (31)
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δW is the first variation, linear in the perturbation, and δ2W the second variation,

quadratic in the perturbation. The system is in equilibrium if δW = 0 for every

possible displacement of the plasma. Furthermore, the plasma is stable if the second

variation δ2W is positive for every displacement.

Since we are interested in the stability at the interface, we need to compute

δ2W . We first consider the variation of MPi and use the property

δ

∫
Pi

d3τX =

∫
Pi

d3τδX +

∫
Ii

d2σ(n · ξ)X (32)

in equation 29. We thus obtain

δMPi =

∫
Pi

d3τB · (∇× a) +
1

2

∫
Ii

d2σ(n · ξ)B2
Pi

− 1

2

∫
Ii−1

d2σ(n · ξ)B2
Pi−1

(33)

We then make use of the identity [16]∫
Pi

d3τB · (∇× a)− a · (∇×B)

=

∫
Ii

d2σn · (a×B)−
∫
Ii−1

d2σn · (a×B)

and considering the boundary conditions 22, we get

δMPi =

∫
Pi

d3τa · (∇×B)− 1

2

∫
Ii

d2σ(n · ξ)B2
Pi

+
1

2

∫
Ii−1

d2σ(n · ξ)B2
Pi−1

(34)

Similarly, we find, for the vacuum

δMV =

∫
V

d3τa · (∇×B) +
1

2

∫
IN

d2σ(n · ξ)B2
V (35)

The helicity variation is obtained following the same method [16]:

δHPi = 2

∫
Pi

d3τa ·B +

∫
Ii

d2σ(n×APi) · (−aPi + ξ ×BPi)

−
∫
Ii−1

d2σ(n×APi−1
) · (−aPi−1

+ ξ ×BPi−1
) (36)

The second and third term on the right-hand side of the equation vanish because of

the boundary condition 22, and we are left with

δHPi = 2

∫
Pi

d3τa ·B (37)
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Putting everything together, we get

δW =
N∑
i=1

(δWPi + δWIi) + δWV (38)

where

δWPi =

∫
Pi

d3τa · (∇×B − µB) (39)

δWV =

∫
V

d3τa · (∇×B) (40)

And where, at the interface,

δWIi =

∫
Ii

d2σ · [(B2
Pi+1
−B2

Pi
)ξ] (41)

for i = 1, 2, ..., N − 1 and

δWIi =

∫
Ii

d2σ · [(B2
V −B2

Pi
)ξ] (42)

for i equal to N . Now, if we set the first variation of the energy functional to zero,

we obtain the following system of equations [5]

∇×B = µB in Pi (43)

P = const in Pi (44)

∇×B = 0 in V (45)

∇ ·B = 0 in V (46)

n ·B = 0 on Ii (47)
s
P +

B2

2

{
= 0 on Ii (48)

n ·B = 0 on W (49)

Pi+1 is replaced by the vacuum for i = N . The boundary conditions n ·B = 0 on Ii
and W are due to the flux constraints with respect to shrinkable loops in Ii and W .

The toroidal fluxes Ψ
(t)
Pi

and Ψ
(t)
V in Pi and V and the poloidal flux Ψ

(p)
V are fixed in

non-shrinkable loops:

Ψ
(t)
Pi

= const (50)

Ψ
(t)
V = const (51)

Ψ
(p)
V = const (52)

The system 43-49 constitutes a free-boundary problem for the determination of the

relaxed state B at the interface Ii.
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We can now derive the second variation of the energy, in the case where δW = 0.

Again, we use the property 32 to get [16]:

δ2WPi =

∫
Pi

d3τδ[a · (∇×B − µB)]

+

∫
Ii

d2σ(n · ξ)[a · (∇×B − µB)]

−
∫
Ii−1

d2σ(n · ξ)[a · (∇×B − µB)] (53)

using the equilibrium equation, the second and the third term vanish and we are left

with

δ2WPi =

∫
Pi

d3τa · δ(∇×B − µB) (54)

Rewriting δB as

δB = b =∇× a (55)

We obtain

δ2WPi =

∫
Pi

d3τa · [∇× (∇× a)− µ(∇× a)] (56)

Note that here we followed Spies et al ’s [16] derivation where δµ is considered as

neglectable. We then use the identity∫
Pi

d3τ
[
a ·∇× (∇× a)− |∇× a|2

]
=

∫
Ii

d2σ(a× n) ·∇× a−
∫
Ii−1

d2σ(a× n) ·∇× a (57)

Employing the boundary condition n× a+ (n · ξ)B = 0 on the right hand side of

the previous equation, we get∫
Pi

d3τ
[
a ·∇× (∇× a)− |∇× a|2

]
=

∫
Ii

d2σ(n · ξ)B ·∇× a−
∫
Ii−1

d2σ(n · ξ)B ·∇× a (58)

Using this in 56 leads to

δ2WPi =

∫
Pi

d3τ
[
|∇× a|2 − µa · (∇× a)

]
+

∫
Ii

d2σ(n · ξ)B ·∇× a−
∫
Ii−1

d2σ(n · ξ)B ·∇× a (59)

Using the same method, we get, for the vacuum region:

δ2WV =

∫
V

d3τ |∇× a|2 −
∫
IN

d2σ(n · ξ)BV ·∇× aV (60)
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We then resort to the property

δ

∫
S

d2σ ·X =

∫
S

d2σ · (δX + ξ∇ ·X) (61)

And obtain the variation of the surface term:

δ2WIi =
1

2

∫
Ii

d2σ · {δ[(B2
Pi+1
−B2

Pi
)ξ] + ξ(∇ · [(B2

Pi+1
−B2

Pi
)ξ])} (62)

Pi+1 is replaced by V for i = N , here and in the following expression. Using the

equilibrium equations, we are left with

δ2WIi =
1

2

∫
Ii

d2σ(n · ξ)[δ(B2
Pi+1
−B2

Pi
) + ξ ·∇(B2

Pi+1
−B2

Pi
)] (63)

We then use the two following properties:

ξ ·∇(B2
Pi+1
−B2

Pi
) = 2(n · ξ)B Jn ·∇BK (64)

and

δ(B2
Pi+1
−B2

Pi
) = 2 JB · (∇× a)K (65)

We replace them into 63 to obtain

δ2WIi =

∫
Ii

d2σ(n · ξ) JB ·∇× aK + (n · ξ) JBn ·∇BK (66)

The first term cancell out with the second and third terms of expressions 59 and 60.

Thus, the second variation of the energy is finally given by [5]

δ2W =
N∑
i=1

δ2WPi + δ2WIi + δ2WV (67)

with

δ2WPi =

∫
Pi

d3τ [|∇× a|2 − µia∗ · (∇× a)] (68)

δ2WIi =

∫
Ii

d3σ|n · ξ|2 JBn ·∇BK (69)

δ2WV =

∫
V

d3τ |∇× a|2 (70)

where ∗ means the complex conjugation. We are allowed to introduce complex test

functions because the functional 67 remains real. Spies [5] states a necessary and

sufficient condition for stability (δ2W > 0 for all perturbations) as no eigenvalue α

of the problem:

∇× (∇× a) = α(∇× a) in Pi (71)

∇× (∇× a) = 0 in V (72)

n× a = 0 on W (73)

µ JB ·∇× aK + α JBn ·∇BK on Ii (74)

n× aP,V + ξBP,V = 0 on IN (75)
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is between zero and µ.

We then follow Kaiser and Uecker [13] and minimize δ2W with respect to a.

The displacement ξ is kept on the interface and the tangential component of a is

fixed thanks to 75. The Euler-Lagrange equations for a are then

∇× (∇× a) = µ(∇× a) in Pi (76)

∇× (∇× a) = 0 in V (77)

n× a = 0 on W (78)

Now let us come back to equation 68 and try to write it as a surface integral. We

first use the condition

∇× (∇× a) = µ(∇× a) (79)

to get

δ2WPi =

∫
Pi

d3τ(|∇× a|2 − a∗ ·∇× (∇× a)) (80)

Then we resort to the property ([16] equation 51)∫
Pi

d3τ [a∗ ·∇× (∇× a)− |∇× a|2]

=

∫
Ii

d2σ(a∗ × n) · (∇× a) (81)

using the boundary condition

a× n = (ξ · n)B (82)

we get the following expression∫
Pi

d3τ [a∗ ·∇× (∇× a)− |∇× a|2]

=

∫
Ii

d2σ(ξ∗ · n)B · (∇× a) (83)

we can notice that if we replace 83 in 80 we get

δ2WPi = −
∫
Ii

d2σ(ξ∗ · nB) · (∇× a) = −
∫
Ii

d2σξ∗B · b (84)

Which, using

δ2WIi =

∫
Ii

d2σ
q
|n · ξ|2B(n ·∇)B

y
(85)

Gives the following solution at the interface Ii:

δ2W =

∫
Ii

d2σ
q
ξ∗B · b+ |n · ξ|2B(n ·∇)B

y
(86)
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The perturbing magnetic field b = ∇ × a is then determined by a system of five

equations:

∇× b = µb in Pi (87)

∇× b = 0 in V (88)

∇ · b = 0 everywhere (89)

n · b = 0 on W (90)

n · bP,V = BP,V ·∇ξ + ξn ·∇× (n×BP,V ) on Ii (91)

and the flux conditions are given by [13]

Ψ
(t)
Pi

=

∮
Cs

dl · (ξn×BPi
) (92)

Ψ
(t)
V =

∮
Cs

dl · (ξn×BV ) (93)

Ψ
(p)
V =

∮
Cl

dl · (ξn×BV ) (94)

where Cs and Cl are loops in Ii. s denotes the short way around the torus, l the

long way. These two loops are oriented such that n, a vector along Cs and a vector

along Cl form a right handed system. Coming back to equation 85 we can affirm

that the equilibrium is in a relaxed state if∑
i

∫
Ii

d2σ
q
ξ∗B · b+ |ξ|2B(n ·∇)B

y
≥ 0 (95)

for all normal displacement ξ of the interface and corresponding to a magnetic field

b as described in equations 87 to 91.
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3. Stability of pressure jump surface to short-wavelength modes

Let us now use the δ2W expression derived previously in 67 and write the Lagrangian

of our system, considering only the leading order

L =
∑
i

∫
Pi

d3τ
1

2
ρ
∥∥∥ξ̇∥∥∥2

− δ2W (96)

L =
∑
i

∫
Pi

d3τ
1

2
ρω2 ‖ξ‖2 −

∑
i

∫
Pi

d3τ ‖b‖2 (97)

Let us define the displacement ξ as

ξ± = ξ0f±(x, y)eiS±(x,y,z)/ε+iωt (98)

where f , S±, k± ∈ C,2 where ε is an expansion parameter and where the eikonal

function S± is given such that

k± = ∇S± (99)

The labels ± are used to specify which side of the interface is considered. The label

− corresponds to the inner side (side closest to the magnetic axis) while the sign +

corresponds to the outer side (see figure 5). The quantity ξ̂ = ξ0f±(x, y) is assumed

Figure 5: A depiction of a toroidal segment of the surface I [2]

2S is complex because we are interested in surface modes - they are oscillatory disturbances of the
interface which produce field perturbations that decay exponentially away from the surface.
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to vary slowly at the equilibrium length scale. In contrast, the variation of S± is

rapid and thus ‖k‖ /ε >> 1, where we define ‖k‖ the complex norm as

‖k‖ =
√
k∗ · k (100)

The perturbed field potential can be written as3

a± = ξ± ×B± (101)

in “Newcomb gauge” [6]. Furthermore, we have b±

b± =∇× (ξ± ×B±) (102)

Since the variation of S± is rapid, we can write the curl operator using k:

b± =
iξ0k±
ε
× (f± ×B±)eiS±/ε +O(ε0) (103)

And using the property

a× (b× c) = (a · c)b− (a · b)c (104)

we get

b± =
iξ0

ε
(k± ·B±I −B±k±) · f±eiS±/ε +O(ε0) (105)

Multiplying by the complex conjugate, we get the norm

‖b±‖2 =
ξ2

0

ε2
[(k∗± ·B±)f ∗± − (k∗± · f ∗±)B±]

· [(k± ·B±)f± − (k± · f±)B±] +O(ε) (106)

We then use the Beltrami equation for perturbed magnetic potential

∇× (∇× a±) = µ±∇× a± (107)

Again, using the fact that S± is varying fast, we replace the curl operator and obtain

k± × (k± × a±) = O(
1

ε
) (108)

using 105, we get, to leading order

k± × [(k± ·B±)I −B±k±] · f± = 0 (109)

where I is the unity matrix. Writing the previous expression more explicitly, we get

[(k± ·B±)k± × I − (k± ×B±)k±] · f± = 0 (110)

Now let us consider the following expression for k±

k± = ±iδ±ez + ktgt (111)

3Only the normal component ξ · n has a geometrical signifiance - on I, ξ+ · n = ξ− · n = ξ

determines the displacement of the interface. The tangential components ξ±tgt are required to give
b satisfying the Beltrami equation.



3 Stability of pressure jump surface to short-wavelength modes 21

with δ± > 0 and ktgt = kθeθ + kζeζ , k
θ, kζ ∈ R and ez a vector perpendicular to the

surface. We recall that

k± ·B± = ktgt ·B± ∈ R (112)

where we assume that ktgt and B± are not collinear. Written explicitly, the function

f± is given by

f± = f±z ez + f±tgt (113)

f± = f±z ez + f±BB± + f±k ktgt (114)

Using 110,112 and 114, we get the following expression:

[(ktgt ·B±)k± × I − (k± ×B±)k±] · (f±z ez + f±k ktgt) = 0 (115)

We then multiply 115 by B±, and we get

(ktgt ·B±)[B± × (ktgt ± iδez)] · (f±z ez + f±k ktgt) = 0 (116)

Which leads to two different solutions:

ktgt ·B± = 0 (117)

or

(ez ·B± × ktgt) · (f±z + iδ±f
±
k ) = 0 (118)

using the condition that B± and ktgt are not collinear, we are left with

(f±z + iδ±f
±
k ) = 0 (119)

We then start again from 115 but multiply it by ez this time. We obtain

(ktgt ·B±)ez · ktgt × (f±z ez + f±k ktgt)

−ez · ktgt ×B±(ktgt ± iδ±ez) · (f±z ez + f±k ktgt) = 0 (120)

It appears quite clearly that the first term vanishes. Using the condition that B±
and ktgt are not collinear, we are left with only

±iδ±f±z + f±k ‖ktgt‖2 = 0 (121)

We then write 119 and 121 as a matrix(
1 ∓iδ±
±iδ± ‖ktgt‖2

)(
f±z
f±k

)
=

(
0

0

)
(122)

and compute the determinant

det

(
1 ∓iδ±
±iδ± ‖ktgt‖2

)
= 0 (123)

Thus

‖ktgt‖2 − δ2
± = 0 (124)
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And finally

δ± = ‖ktgt‖ (125)

This means that the disturbance dies away exponentially (i.e. is evanescent) as we

move away from the surface on both sides. Replacing this result into 121, we get

f±k = ∓ if±z
‖ktgt‖

(126)

We are free to choose f±B = 0. Then, using 126, we get

f± =

(
ez ∓ i

ktgt

‖ktgt‖

)
f±z = ∓i k±

‖ktgt‖
f±z (127)

Thus we cannot choose ξ+ and ξ− to be the same on both sides, only the components

in the ez direction are similar. We can then write

ξ± = ∓i k±
‖ktgt‖

ξz (128)

where

k± = ktgt ± i ‖ktgt‖ ez (129)

Taking the square of k±, we get

k2
± = 0 (130)

Inserting 128 in 102, we obtain

b± = ±k± × (k± ×B±)

ε ‖ktgt‖
ξz (131)

We then use the property of the double cross product 104 and the fact that k2
± = 0

to find

b± = ∓k±
ktgt

ε ‖ktgt‖
·B±ξz (132)

The norm of b± is given by

b∗± · b± =
k± · k∗±
ε2

∥∥∥∥ ktgt

‖ktgt‖
·B±

∥∥∥∥2

‖ξz‖2 (133)

But

k± · k∗± = ‖ktgt‖2 + ‖ktgt‖2 = 2 ‖ktgt‖2 (134)

Thus we obtain

b∗± · b± = 2
‖ktgt ·B±‖2

ε2
‖ξz‖2 (135)

We then introduce this result into the L expression (equation 97) and get

ρω2 = 4
∑
±

‖ktgt ·B±‖2

ε2
(136)
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Figure 6: Zero magnetic shear schematic representation

which is strictly positive unless we have

ktgt ·B+ = ktgt ·B− = 0 (137)

The property 137 is verified only if B+ is parallel or antiparallel to B− (see figure

6). It shows that pressure-jump surfaces are stable to short-wavelength modes unless

there is at least one point at which the local magnetic shear is zero. Such points must

exist if there is no jump in rotational transform across the surface, i.e. if the global

surface magnetic shear is zero at the pressure-jump interface. Previous studies [6]

showed that zero rotational transform jump is good for internal stability of a finite-

width interface. In the specific case of a cylindrical geometry, if the magnetic shear

is zero at one point on the surface, then the local shear is also zero everywhere on the

surface. This case is thus very similar to that studied by Bernstein et al [4], showing

that a cylinder with a decreasing pressure outwards is unstable to high-n flute modes,

because the curvature is unfavorable everywhere. If the global magnetic shear at

the interface is zero then, in the 2-D, axisymmetric case there will be axisymmetric

circles where the local magnetic shear vanishes. In a general 3-D geometry there will

also be lines on which the local shear vanishes. In both the 2-D and 3-D cases, it is

necessary to extend Bernstein et al [4] analysis. That is, we need to expand around

the line, or point, of zero shear and construct an envelope function that satisfies the

dynamical equations. But before going further, let us consider the δ2W to order ε0

when the local magnetic shear is zero.
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4. Stability at zero magnetic shear: theoretical approach

Let us focus our study on a plasma/plasma interface and start with the δ2W equation

δ2W =

∫
i

d2σ
q
ξ∗B · b+ |ξ|2B(n ·∇)B

y
(138)

where b± is given by

b± =∇× (f± ×B±)ξ0e
iS±/ε (139)

= ξ0e
iS±/ε

ik±
ε
× (f± ×B±) + ξ0e

iS±/ε∇× (f± ×B±) (140)

We are interested in the cases of zero magnetic shear, where B ·b vanishes to highest

order, i.e. when

B · b± = ξ0e
iS±/εB ·∇× (f± ×B±) (141)

δ2W is then given by

δ2W =

∫
i

d2σ
q
ξ2

0(f ∗ · n)B ·∇× (f ×B) + ξ2
0 |f |2B(n ·∇)B

y
(142)

We then follow Bernstein [4] and rewrite the second term of the integral using

B±n ·∇B± = n ·R±
‖B±‖2

R2
±

(143)

with R± the vector from a point on a line of force to the center of curvature field

line. Note that, for a point close to zero magnetic shear, R+ ≈ R−. The second

variation of the energy is then given by

δ2W =

∫
i

d2σ
q
ξ2

0(n · f ∗)B ·∇× (f ×B)
y

+ ‖ξz‖2n ·R‖B+‖2 − ‖B−‖2

R2
(144)

If R is directed toward the plasma, the second term of equation 148 has a

stabilizing contribution if ‖B+‖2 < ‖B−‖2 and an unstabilizing contribution if

‖B+‖2 > ‖B−‖2. On the other hand, if R points away from the plasma, the system

is stabilized by the second term if ‖B+‖2 > ‖B−‖2 and is made more unstable if

‖B+‖2 < ‖B−‖2

In tokamak or stellarator, the toroidal field is stronger than the poloidal field.

The curvature is thus directed approximately towards the Z-axis. The outward

normal n is directed away from the magnetic axis. Thus n·R has different signs : on

the outboard side farthest from the Z-axis the curvature is unfavorable (n ·R < 0).

By contrast, on the inboard side the curvature is favorable (n · R > 0). This is

why ballooning modes, i.e. pressure-driven modes which limit the maximum ratio
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between the plasma pressure and the magnetic pressure [3], are stronger on the

outboard side.

It is common, in plasma physics, to define a field-line curvature vector

κ = e‖ ·∇e‖ (145)

where

e‖ =
B

‖B‖
(146)

It can be proved that κ is perpendicular to B or, in other terms, that

κ ·B = 0 (147)

This is done in Annexe 10.1. δ2W can be written in terms of κ

δ2W =

∫
i

d2σ
q
ξ2

0 |f ∗|B ·∇× (f ×B)
y

+ ‖ξz‖2n · κ(‖B+‖2 − ‖B−‖2) (148)

Where we identify κ as

κ =
R

R2
(149)
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5. Study of the energy variation using Green’s functions

Another approach to the stability problem is to make use of the Green’s function

method. We give below a short résumé of some interesting ideas and present some

new expressions derived. However, deeper investigations and computations still have

to be undertaken.

We start by considering the homogeneous Neumann force-free field problem,

which is given by

∇×B = µB (150)

in the volume P and by

n ·B = 0 (151)

on the surface ∂P . µ is constant. This problem is equivalent to solving the Dirichlet

problem [23] (given here in a cylindrical coordinate system)

∂

∂r

(
1

r

∂

∂r
(rBφ)

)
+
∂2Bφ

∂z
+ µ2Bφ = 0 (152)

on the surface S and with the boundary conditions

1

r

∂

∂r
(rBφ)er +

∂Bφ

∂z
ez = 0 (153)

on the boundary ∂S. The 2 other components of the magnetic field are given by

Br = − 1

µ

∂Bφ

∂z
(154)

and

Bz =
1

µr

∂

∂r
(rBφ) (155)

The boundary condition 153 is equivalent to

rBφ = const (156)

on ∂S. Thus, for each µ, there exist axially symmetric solutions to the problem 151-

152. We can now derive a boundary integral equation for these axially symmetric

solutions. We want this equation to be uniquely solvable for all µ different from a

Dirichlet eigenvalue for the problem 152. We thus make use of the following theorem

[24]: Let

Φ(r, r′) =
1

4π

eiµ|r−r′|

|r − r′|
(157)

be the fundamental solution to the Helmoltz equation in 3 dimensions

∆Φ = µ2Φ (158)
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and let our magnetic field B ∈ C1(P ) ∩ C(P ) with ∇ ·B ∈ C(P ). There holds

B = −∇U +∇×A+ µA (159)

in P where

U(r) =

∫
P

Φ(r, r′)∇ ·B(r′)dr′

−
∫
S

Φ(r, r′)[n(r′) ·B(r′)]dS(r′) (160)

and

A(r) =

∫
P

Φ(r, r′)[∇×B(r′)− µB]dr′

−
∫
S

Φ(r, r′)[n(r′)×B(r′)]dS(r′) (161)

In our case, ∇ ·B = 0 in P , n(r′) ·B(r′) = 0 on ∂P and ∇×B(r′)− µB = 0 and

we are only left with

B(r) =∇×A+ µA (162)

= − (∇×+µ)

∫
S

Φ(r, r′)[n(r′)×B(r′)]dS(r′) (163)

We then use the same approach to find an expression for b. We know that∇·b = 0 in

P ,

n(r′) · b(r′) = B · ∇ξ + ξn · ∇ × (n × B) on ∂P and ∇ × b(r′) − µb = 0.

We are thus only left with

b(r) = − (∇×+µ)

∫
S

Φ(r, r′)[n(r′)× b(r′)]dS(r′)

− ∇
∫
S

Φ(r, r′)[n(r′) · b(r′)]dS(r′) (164)

b(r) = − (∇×+µ)

∫
S

Φ(r, r′)[n(r′)× b(r′)]dS(r′)

− ∇
∫
S

Φ(r, r′) {B(r′) ·∇ξ(r′)

+ ξ(r′)n(r′) ·∇× [n(r′)×B(r′)]} dS(r′) (165)

We want to express b as a function ofB and ξ. Let us consider the Fourier transform

of b

b(r) =

∫
bke

ik·rdk3 (166)

and of ξ

ξ(r) =

∫
ξke

ik·rdk3 (167)
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Figure 7: Feynman propagator representation [38]

Furthermore, we notice that the fundamental solution to the Helmoltz equation

Φ(r, r′) =
1

4π

eiµ|r−r′|

|r − r′|
(168)

satisfies

(∇2 + µ2)Φ(r, r′) = −δ(r − r′) (169)

In particular, the function

Φ1(r, r′) =
−iµ
4π2

∫
d3k

eik·(r−r′)

k2 − µ2
(170)

is a solution of 169. If we look at the solution of the Helmoltz equation 170, we

notice that this solution has two poles at |~k| = ±µ. An idea would thus be to use

the Feynman propagator, i.e. a contour of integration going under the left pole and

over the right pole. For instance, in going from the Fourier-space form of Φ to the

real-space form, we can do the kz integral first. We complete the contour in the

lower/upper half plane according as z − z′ > 0 or z − z′ < 0. Since we want φ to be

non-zero for both signs of z − z′, there must be a pole in both the upper and lower

half kz plane, as for the Feynman propagator. However, this does not completely

resolve the problem, because what we really want to do is to use the surface form of

the Green’s function solution, in which Φ(x − x′, y − y′, 0) needs to be interpreted

in a principal part sense, by cutting out a little circle about x = x′, y = y′ and

shrinking it to zero.

Note also that inserting 166, 167 and 170 in our expression for b 165, we get an

expression relating bk to B and ξk (see appendix 10.2 for details)∫
bke

ik·rdk +
1

4π2
(∇×+µ)

∫
d3k

1

k2 − µ2
(n× bk)eik·r

=∇ iµ

4π2

∫
d3k

1

k2 − µ2
[iB · kξk

+ξkn ·∇× (n×B)]eik·r (171)
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6. Study of the stability around zero magnetic shear points using a

Hamilton-Jacobi theory

As shown previously the plasma at equilibrium is, in general, stable to a deformation.

The dominant term of the δ2W equation
∫
Ii
d2σ JξB · bK is always positive, and

only goes to zero when B+‖B−. We are thus interested in applying deformations

at points close to zero magnetic shear, where the curvature term competes with

the
∫
Ii
d2σ JξB · bK term. We will thus focus on the study of these special points.

To this end, we resort to a code written by M. McGann (paper to be published)

which computes the magnetic field on the outer side of an interface, when the field

inside the interface and the pressure jump are known. The approach used in the

code will be presented in the following sections. But before going further, we need

to introduce some theoretical concepts, and, in particular, describe what are the

curvilinear coordinates.

6.1. Curvilinear coordinates

To study the equilibrium at the plasma interface, it is useful to resort to curvilinear

coordinates. Curvilinear coordinates are a coordinate system for Euclidean space

in which the coordinate lines can be curved. Figure 8 shows the difference between

curvilinear and Cartesian coordinates in a two dimensional space. In our case, we

Figure 8: curvilinear and Cartesian coordinates in a two dimensional

space [38]

assume a coordinate system θ, ζ, s where the radial coordinate s labels smoothly

nested tori, except in the case of the coordinate singularity s = 0, which is a

topologically circular space curve. The tori s = const = si corresponds to the

plasma interface Ii. Thus, es is perpendicular to the surface. We then define the 2



6.1 Curvilinear coordinates 30

Figure 9: Coordinate surfaces, coordinate lines, and coordinate axes of

general curvilinear coordinates [38]

other basis vector eθ and eζ where θ and ζ are arbitrary poloidal and toroidal angles,

respectively. The directions in which the coordinates θ and ζ increase are chosen

such that (eθ, eζ , es) is a right-handed coordinate system. If r is the position vector

of any point in the plasma, we have θ = θ(r), ζ = ζ(r) and s = s(r). Inverting

these relations, we obtain a function R

r = R(θ, ζ, s) (172)

The basis vector for the contravariant representation are then given by (eθ, eζ , es) =

(∂θR, ∂ζR, ∂sR) while the basis vectors for the covariant representation are

(eθ, eζ , es) = (∇θ,∇ζ,∇s). The basis vectors can be written more explicitly as

follow:

ei = ∂iR =
ej × ek

eθ · eζ × es
(173)

and for the covariant representation:

ei =∇ui =
ej × ek

eθ · eζ × es
(174)

Note first that (eθ, eζ , es) and (eθ, eζ , es) are mutually reciprocal basis: ei · ej = δji .

An arbitrary vector can then either be represented in the covariant representation

B = Bie
i (175)
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or in the contravariant representation:

B = Biei (176)

The metric elements are given by

gij = ei · ej (177)

And

gij = ei · ej (178)

The metric tensor is used to convert between covariant and contravariant

representation by raising or lowering indices:

Bi = gijBj (179)

Bi = gijB
j (180)

The Jacobian of the metric tensor takes the form
√
g = [det(gij)]

1/2 = eθ · eζ × es = (eθ · eζ × es)−1 (181)

The Jacobian is always positive since we are working with a right-handed set of basis

vectors. Now that we have defined the Jacobian, we can give an expression for the

volume element appearing in the integration of the energy variation:

dV =
√
gdθdζds (182)

The surface area element at the interface I is given by

dS = ±√ges(θ, ζ, s)dθdζ (183)

The sign depends on whether we are considering an inner or an outer boundary of

the region in question. This means that for a region Pi, the sign is negative for Ii−1

and positive for Ii. In curvilinear coordinate, the gradient is given by

∇ = ei∂i (184)

while the divergence takes the form
√
g∇ ·A = ∂i(

√
gAi) (185)

Finally the curl operator is given by
√
g∇×A = εi,j,k(∂iAj)ek (186)

where εi,j,k is the Levi-Civita symbol.
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6.2. Hamiltonian development

Let us come back now to the methodology developed by McGann [2] and write the

pressure jump equation, at the interface, in terms of the covariant components:

2∆P =
∑

i,j∈{θ,ζ}

gij[B+
i B

+
j −B−i B−j ] (187)

In this geometry, the surface magnetic field is written

Bθ = gθθBθ + gθζBζ (188)

Bζ = gθζBθ + gζζBζ (189)

Using that

B · n = 0 (190)

and

(∇×B) · n = 0 (191)

we obtain the following result [6]

∂θB
±
ζ − ∂ζB

±
θ = 0 (192)

We can thus represent the magnetic field using scalar functions

B±θ = ∂θf
± (193)

B±ζ = ∂ζf
± (194)

where f± =
∫
B± · dl are referred to as surface potentials. When known, they fully

define the magnetic field on both sides of the interface. We prescribe the field on one

side, B− say, so f− is treated as known, and f+ is to be found from the equilibrium

condition 187. Using the preceding result, equation 187 can be rewritten as

2∆P =
∑

i,j∈{θ,ζ}

gij[∂θf
+∂ζf

+ − ∂θf−∂ζf−] (195)

which is a partial differential equation for f+. We want to use an Hamiltonian

approach to be able to compute the magnetic field at the outer side of an interface,

once we have defined the magnetic field at the inner side. We thus write the pressure

jump condition as

H(θ, ζ, ∂θf
+, ∂ζf

+) = ∆P (196)

where

H(θ, ζ, pθ, pζ) = gijpipj + V (θ, ζ) (197)
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Here, the potential V is given, in terms of the known potential f−

V (θ, ζ) = gij∂if
−∂jf

− (198)

and the generalized momenta of the Hamiltonian is

pi = ∂if
+ = B+

i (199)

The partial differential equation 196 can be solved by integrating along its

characteristics, which obey Hamilton’s equation of motion. Once a solution with

the desired irrational number is found, it can be identified with the magnetic field

B+

The magnetic field lines can be regarded as trajectories of a 11
2

degree of freedom

Hamiltonian [2] dynamical system where the toroidal angle ζ is taken to be the analog

of time. The half degree of freedom implies that the Hamiltonian depends explicitly

on ζ.

The solutions to the Hamiltonian system can be obtained by solving the four

characteristic equations [2]

θ̇ =
∂H

∂pθ
= gθθpθ + gθζpζ (200)

ζ̇ =
∂H

∂pζ
= gθζpθ + gζζpζ (201)

ṗθ = −∂H
∂θ

= ∂θg
θθpθ + ∂θg

θζpζ − ∂θV (202)

ṗζ = −∂H
∂ζ

= ∂ζg
θζpθ + ∂ζg

ζζpζ − ∂ζV (203)

In general, the solution to this Hamiltonian is not unique. To make it unique, we

can specify the rotational transform of the field line. The rotational transform, in

our case is defined as the limit

ι = lim
∆ζ→∞

∆θ

∆ζ
(204)

In action angle coordinate, we can write

ι =
ωΘ

ωz
(205)

where

Θ = ωΘt (206)

and

Z = ωzt (207)
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Figure 10: Schematic for the relation of the PJH Hamiltonian and the

field line Hamiltonian and their respective phase spaces

These equations are the equations of motion of the system. ωΘ and ωz, the poloidal,

respectively toroidal angular frequency, are constant. This coordinate system is

called straight field line coordinates, because, as its name suggests it, the magnetic

field appears as a straight line in this coordinate system. The magnetic potential is

then given by

f = CΘΘ + CzZ + f̂(θ, ζ) (208)

where CΘ and Cz are constants and f̂(θ, ζ) is a periodic function in θ and ζ:

f̂ =
∑

fmn sin(mθ − nζ) (209)

Let us now come back to the Hamiltonian equations 200 to 203 and rewrite them to

simplify the computation of Hamiltonian orbits. We first divide 200 by 201, which

imply, as stated before, that we consider the toroidal angle-like coordinate as the

“time” variable.

We thus obtain an equation which describes the path of the Hamiltonian

trajectory through configuration space

dθ

dζ
=
gθθpθ + gθζpζ
gθζpθ + gζζpζ

=
Bθ+

Bζ+
(210)
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This is the equation of a magnetic field line on the outer side of the interface4.

Dividing 202 and 203 by 201, we obtain two equations that relate the canonical

momentum with the covariant components of the magnetic field along a Hamiltonian

trajectory.

dpθ
dζ

=
∂θg

θθpθ + ∂θg
θζpζ − ∂θV

gθζpθ + gζζpζ
(211)

dpζ
dζ

=
∂ζg

θζpθ + ∂ζg
ζζpζ − ∂ζV

gθζpθ + gζζpζ
(212)

4When an invariant torus in the PJH phase space is found, it can be identified with one side of the
interface I, which is a magnetic surface on both sides. Orbits elsewhere in the PJH phase space
cannot be identified with physical field lines (see figure 10).
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7. Numerical implementation

7.1. PJH code

To solve the Hamiltonian equations, the PJH code resorts to a routine of the NAG

library which integrates a system of first-order ordinary differential equations over a

specified interval. It uses a fixed order Runge-Kutta method to solve the differential

equation problem.

Typical results obtained using McGann’s PJH code are presented on figure 11

and 12. Figure 11 shows the variation of the outside field at an interface as we

increase the deformation of the interface, in a case when there is no pressure jump.

It shows the projection of the field line on the ζ = 0 Poincaré section. The top left

picture represents a toroidal perfectly axisymmetric surface. We notice, on this first

picture, 2 different kinds of field lines: the ones whose Poincaré section intersection

is a continuous line, and the ones that are represented by a discontinuous line on the

Poincaré section. The discontinuous lines can be due either to the fact that we need

to integrate over a larger number of ζ loops to cover the whole θ range, or simply

to the fact that the magnetic field has a rational rotational transform and thus only

passes through a specific number of points. We can also identify the points of zero

magnetic shear on this figure, where B−θ = B+
θ = 1.

When the interface is a deformed torus, the PJH orbits take a less regular shape.

If the deformation is big enough, we find orbits for which the intersection with the

ζ = 0 Poincaré section gives a closed loop. If we consider bigger deformations, we see

that the orbits start having a chaotic behaviour. Note that even if the deformation of

the interface is very strong, the intersection of the PJH orbits on the ζ = 0 Poincaré

section is still a continuous, or discontinuous line for the points very close to zero

magnetic shear. Figure 12 shows the same evolution of the outside magnetic field

at an interface as we increase the deformation, but with a pressure jump this time.

The pressure at the outer surface is equal to the one at the inner surface diminished

by 30%. We see that the trajectories become chaotic much faster than when there is

no pressure jump. Furthermore, we notice that even with a very small deformation,

we already observe PJH orbits for which the intersection with the ζ = 0 Poincaré

section gives a closed loop.

Note that the PJH code written by M. McGann has been benchmarked using

the SPEC code from S. Hudson. To make us sure the part we added to this code

is physically correct, we did several tests during the programming work that will be

detailed below.
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Figure 11: intersection with the ζ = 0 Poincaré section in the case where

there is no pressure jump, and for deformations increasing from top left

to bottom right
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Figure 12: Projection on the ζ = 0 Poincaré section in the case where

the pressure at the outer surface is equal to the one at the inner surface

diminished by 30%, and for deformations increasing from top left to

bottom right
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Figure 13: intersection with the ζ = 0 Poincaré section of Bζ , in the case

where the interface is a perfectly axisymmetric torus and when there is

no pressure jump.

7.2. ζ component of the magnetic field

We first recall that, in our research, we are especially interested in studying the

stability around the points of zero magnetic shear. We thus needed to be able to

compute the ratio Bζ/Bθ at the inner and at the outer interface to find the variation

of the rotational transform. That is why we first had to make sure that the ζ

component of the magnetic field was reconstructed correctly. Figure 13 shows, as

an example, the Bζ value as a function of θ for ζ = 0 in the case where the interface

is a perfectly axisymmetric torus and when there is no pressure jump. We see that

Bζ behaves in an opposite way to Bθ (Figure 11, top left picture), which is logical

since the norm of B is conserved when there is no pressure jump.

7.3. Localization of the zero magnetic shear points

Now that we have controlled the accuracy of the ζ component of the magnetic field,

we can study the rotational transform variation at the interface. In general, the

points of zero magnetic shear will be localized on continuous curves on the surface.

This can be seen quite easily from the fact that the points of zero magnetic shear
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Figure 14: Points close to zero magnetic shear in a toroidal device with

no deformation. The points of zero magnetic shear can be found on two

circles positioned symmetrically on both side of the horizontal plane

are the s = 0 contours of the scalar function:

s(θ, ζ) ≡ n ·B− ×B+ (213)

In a toroidally symmetric machine like a tokamak these contours will be circles going

around the torus the long way. In a poloidally symmetric machine, i.e. a bumpy

torus with a large-aspect ratio (ratio of the average major radius to the average

minor radius) they would be circles going around the short way. Stellarators for

example are normally large aspect ratio devices with the aspect ratio usually being

in the range of 7-10 [26]. In a general 3D case, they could also form closed loops

not going around the torus either way, but they would almost never degenerate to

a single point. Figure 14 shows the points close to zero magnetic shear in a toroidal

device. We see clearly that the points of zero magnetic shear can be found on two

circles positioned symmetrically on both side of the horizontal plane. Figure 15

shows the points close to zero magnetic shear for a bumpy torus with quite a strong

deformation. We see that in this case, the points of zero magnetic shear tend to

form a closed loop in the ζ = 0 Poincaré section.
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Figure 15: Points close to zero magnetic shear for a bumpy torus with

R01 = −Z01 = 7 ·10−3, R21 = Z21 = 7 ·10−3. The points of zero magnetic

shear form a close loop in the (θ, ζ) plane.

7.4. 3-dimensional metric

An important element we had to add to McGann’s code was to expand the 2-

dimensional metric to a 3-dimensional one including a vector normal to the surface.

In the code, the general shape of the interface is describe in the following way:

x = R0 cos(ζ) +R1 cos(ζ) cos(θ) +
∑
m,n

Rmn cos(mθ − nζ) cos(ζ) (214)

y = R0 sin(ζ) +R1 sin(ζ) cos(θ) +
∑
m,n

Rmn cos(mθ − nζ) sin(ζ) (215)

z = R1 sin(θ) +
∑
m,n

Zmn sin(mθ − nζ) (216)

with R0 the toroidal radius of the torus, R1 the poloidal radius of the torus, and

where the deformations of the interface are given by the Rmn and Zmn elements. We

thus had to specify the Rmn and Zmn elements and their derivatives with respect

to the normal component. We decided to postulate that the deformation increases

linearly as we go away from the center of the plasma region, i.e. we took

Rmn = Cmns (217)
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Figure 16: Metric element gζζ as a function of θ, in the case where the

interface is a perfectly axisymmetric torus without any deformation

Zmn = Dmns (218)

with Cmn and Dmn being constants. Thus it follows that

∂Rmn

∂s
= Cmn (219)

∂Zmn
∂s

= Dmn (220)

And the second derivative is given by

∂2Rmn

∂s2
=
∂2Zmn
∂s2

= 0 (221)

The gij metric elements are then obtained after computing the basis vectors

(eθ, eζ , es).

In the case where the interface is a perfectly axisymmetric torus without any

deformation, we get gθθ = const, gθθ = const, gss = const and gss = const. The

terms gζζ and gζζ depend on the θ angle, as can be seen on figure 16 and 17. As

one would expect, gζζ is bigger away from the center of the torus, and smaller

close the the center of the torus. gζζ has the opposite behaviour. Since our basis

vectors are perpendicular to each other, we verify that the other components vanish

gθζ = gθs = gζs = gθζ = gθs = gζs = 0.
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Figure 17: Metric element gζζ as a function of θ, in the case where the

interface is a perfectly axisymmetric torus without any deformation

Now let us study the case of a surface which is not a perfectly axisymmetric

torus. Here we apply the following deformation R01 = −Z01 = 5 · 10−3, R21 = Z21 =

5 · 10−3 to a torus of toroidal radius 1.0 and of poloidal radius 0.2. We verify that

gθθ, g
θθ, gss and gss are not constant anymore, but vary as a function of θ and ζ.

The variation of gθθ is given as an example on figure 18. gζζ and gζζ also vary as

a function of θ and ζ (see figure 19 for gζζ). The variation is much stronger in the

θ than in the ζ direction as the amplitude of the eζ vector mainly depends on the

distance to the central axis of the torus. We note further that the terms gθs and gζs
are not equal to zero anymore, which is due to the way we defined the derivative of

Rmn and Zmn with respect to s. gθζ also does not vanish anymore. We can thus

conclude by saying the the values obtained for the metric elements are in agreement

with our physical intuition.

7.5. Magnetic field derivatives

Now that we have checked the metric used, we can focus on the computation of the

magnetic field derivatives. But before going further, let us mention a few important

points about the integration method used in the program. To compute the outside

magnetic field, we resort to a routine from the NAG library using a Runge-Kutta

method to solve the Hamiltonian problem presented in section 6.2. This routine



7.5 Magnetic field derivatives 44

Figure 18: Metric element gθθ as a function of θ and for 4 different ζ, for

a deformation R01 = −Z01 = 5 · 10−3, R21 = Z21 = 5 · 10−3 to a torus of

toroidal radius 1.0 and of poloidal radius 0.2.

enables us to compute the magnetic field at the outer surface. Note first that if the

integration process allows us to specify for which ζ value we want to compute the

magnetic field, the θ coordinate is given by the integration along a field line and

thus cannot be specified by the user. This implies that the points are not uniformly

distributed. Indeed, the number of points close to the vertical axis of the torus

tends to be bigger than the number of points on the side of the surface which is the

furthest from the central axis. This is an important point that we have to take into

account while choosing a method to compute the B derivatives.

The derivatives of B with respect to θ and ζ are indeed important for both the

computation of the first and the second term in the δ2W expression 148. We resort

to a very simple method to compute the derivatives: for the derivatives relative to

θ, we simply look at the 2 closest discrete points having the same ζ value, one being

bigger, the other one smaller, and being represented by green squares on figure 23.

The θ derivative at the red point on figure 23 is then given by:

dB

dθ
=
B2 −B1

θ2 − θ1

(222)

The ζ derivative is obtained from the 4 cyan squares on figure 24. By doing a linear

interpolation, we compute the B value at the two virtual points having the same θ
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Figure 19: Metric element gζζ as a function of θ and for 4 different ζ, for

a deformation R01 = −Z01 = 5 · 10−3, R21 = Z21 = 5 · 10−3 to a torus of

toroidal radius 1.0 and of poloidal radius 0.2.

Figure 20: Schematic representation of the way the θ derivatives are

computed
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Figure 21: Schematic representation of the way the ζ derivatives are

computed

value as the point of interest. These 2 points are modeled by green squares on figure

22. Then from this 2 green points, we get the ζ derivative at the red point by doing

dB

dζ
=
B6 −B5

ζ6 − ζ5

(223)

Figure 23 represents the θ component of the magnetic field as a function of θ,

for 3 different ζ. Figure 24 shows the derivatives of Bθ with respect to θ. These 2

figures are obtained for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 5 · 10−3

to a torus of toroidal radius 1.0 and of poloidal radius 0.2.

As we compare the 2 graphs, we see on the second figure that the derivatives

are in good agreement with what is expected when looking at the first figure.

Furthermore and as we will show it later in this paper, the small error due to the

interpolation process does not influence strongly the final result, especially since, in

most of the cases, the term involving the derivative of B with respect to θ and ζ

are not dominant ones in the δ2W expression. Similar results are obtained with the

ζ derivatives.

There are other methods that could have been used to compute the derivatives.

One way is to use an m,n Fourier ansatz for the scalar magnetic potential, and

to determine the amn coefficient to fit the frequency spectrum observed by a point

moving on the highest-order periodic orbit. Because the orbit is high-order, it is
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Figure 22: Schematic representation of the way the ζ derivatives are

computed

Figure 23: Bθ for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 =

5 · 10−3 to a torus of toroidal radius 1.0 and of poloidal radius 0.2
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Figure 24: Derivative of Bθ with respect to θ for a deformation R01 =

−Z01 = 3 · 10−3, R21 = Z21 = 5 · 10−3 to a torus of toroidal radius 1.0

and of poloidal radius 0.2

effectively irrational and will cover the surface almost ergodically, so there should be

enough information to determine all the amn, provided one truncates at a reasonably

low number (this assumes the Fourier spectrum decays rapidly at high m and n,

which will break down near criticality). A similar approach is used in [27]. Another

approach would be to put the Fourier ansatz into Percival’s variational principle [28]

and determine the coefficients.

Since the simplest method gave results with good agreement with the expected

ones, we just concentrate on this method. We emphasize that the accuracy of

the derivatives’ computation strongly depends on the number of discrete points

covering the surface. The bigger the number of discrete points, the more accurate

the integration.

7.6. Study of the curvature term

Let us now study the curvature term. We first verified that the normal vector n

was correctly defined. As an example, we show on figure 25 the z component of n.

Note that all figures presented in this section were obtained for an interface with

a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal

radius 1.0 and of poloidal radius 0.2, and with the outer pressure being equal to the
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Figure 25: z component of n for a deformation R01 = −Z01 = 3 · 10−3,

R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of poloidal

radius 0.2

inner pressure −30%. Figure 25 shows that, as expected, the z component of n is

mainly dependent on the θ coordinate: positive when θ is positive, negative when θ

is negative. The small variations of nz from a totally sinusoidal behaviour are due

to the small deformation of the interface. The accuracy of the x and y component

of n were verified in the same way.

We then study the field-line curvature vector κ, which, in curvilinear

coordinates, can be written

κ =
B

‖B‖
·∇ B

‖B‖

=
1

B2

(
gθθBθ

∂gθθBθeθ
∂θ

+ gθθBθ
∂gζζBζeζ

∂θ

gζζBζ
∂gθθBθeθ

∂ζ
+ gζζBζ

∂gζζBζeζ
∂ζ

)
(224)

As we postulated that the toroidal magnetic field component is much stronger than

the toroidal field component, we expect the field-line curvature vector to be directed

in the direction of the z-axis of the torus. Figure 26 shows the x component of κ

at the inner surface. We see that the x component of κ depends mainly on the ζ

angle. κx is generally positive when the coordinate x is negative and vice versa (this



7.6 Study of the curvature term 50

Figure 26: x component of the field-line curvature vector κ at the inner

interface for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 3 · 10−3

to a torus of toroidal radius 1.0 and of poloidal radius 0.2

is true as long as the interface has a shape close to axisymmetry, with only little

deformations). The y component of κ also mainly depends on ζ. In contrast, we

verify that the z component of κ is mainly dependent on the θ angle, as can be seen

on figure 27. κz is generally positive when z is negative and vice versa.

If we multiply the normal vector to the interface with the field-line curvature

vector, n·k, we obtain the results plotted on figures 28, 29 and 30 We first note that

the nxκx and nyκy terms are much bigger then the nzκz term. They tend to reach

their minimum values when θ is close to zero, and their maximum value when θ ≈ π.

We see that nzκz is almost always negative since n points outside the torus while κ

points in the direction of the vertical axis (z axis). The sum of the 3 components is

given on figure 31. This figure proves that the sign of the curvature term depends

almost only on θ. κ·n is negative away from the z axis (θ close to zero), and positive

close to the vertical axis. We obtain the same kind of results while considering κ at

the outer side of the interface. Note also that |B2
+| − |B2

−| = ∆P , thus the sign of

the curvature term depends on the form of the pressure profile.
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Figure 27: z component of the field-line curvature vector κ at the inner

interface for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 3 · 10−3

to a torus of toroidal radius 1.0 and of poloidal radius 0.2

Figure 28: nxκx at the inner interface for a deformation R01 = −Z01 =

3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of

poloidal radius 0.2
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Figure 29: nyκy at the inner interface for a deformation R01 = −Z01 =

3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of

poloidal radius 0.2

Figure 30: nzκz at the inner interface for a deformation R01 = −Z01 =

3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of

poloidal radius 0.2
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Figure 31: n · κ at the inner interface for a deformation R01 = −Z01 =

3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of

poloidal radius 0.2

7.7. Displacement of the interface, perturbation from equilibrium

To compute the energy variation, we had to specify the displacement ξ (see equation

22) on the interface. We choose a displacement ξ± = ξ0f
±(x, y)eiS(θ,ζ,s)/ε+iωt such

that f±(x, y) satisfies equation 127. Thus, we are looking for an expression of the

form  f±θ
f±ζ
f±s

 =

 ∓ikθ
∓ikζ√

kθkθgθθ + 2kθkζgθζ + kζkζgζζ

h±(θ, ζ) (225)

Further, we want to consider a displacement which is local, i.e. which goes to zero

very fast as we go away from (θ0, ζ0). We thus choose the h function such that

h±(θ, ζ) = e−Cθ|θ−θ0|g
θθ−Cζ |ζ−ζ0|gζζ (226)

where Cθ <<
max(‖kθ‖,‖kζ‖)

ε
and Cζ <<

max(‖kθ‖,‖kζ‖)

ε
. Which leads to the following

expression for the displacement: ξ±θ
ξ±ζ
ξ±n

 = ξ0

 ∓ikθ
∓ikζ√

kθkθgθθ + 2kθkζgθζ + kζkζgζζ


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Figure 32: ‖ξz‖ as a function of θ. We see that the displacement is very

local.

· exp(ikθ|θ − θ0|gθθ + ikζ |ζ − ζ0|gζζ ∓ iks|s− s0|gss)
· exp(−Cθ|θ − θ0|gθθ − Cζ |ζ − ζ0|gζζ) (227)

Figure 32 shows the normal component of the displacement as a function of θ, for 4

different ζ values. We see that the displacement decreases very fast as we go away

from θ0 = 0. This decrease is due to the term exp(−Cθ|θ − θ0|gθθ − Cζ |ζ − ζ0|gζζ).
A zoom on a very small θ range shows the oscillation induced by the exp(ikθ|θ −
θ0|gθθ + ikζ |ζ − ζ0|gζζ ∓ iks|s− s0|gss) term.

7.8. Study of the dominant terms in the magnetic field variation b

Let us now study the first term of the δ2W expression 148∫
i

d2σ
q
ξ2

0(n · f ∗)B · b
y

(228)

(229)

and in particular, let us focus on the b components. We will here only consider the

outside magnetic field perturbation θ component. The same analysis can be made

for the ζ component and for the inner field perturbation. bθ is given by the sum of

12 terms:

b±θ =
∑
i=1,12

t±i
gθθ
g

(230)
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where

t±1 = −dξ
±
s

ds
B±θ gζζ (231)

t±2 = −ξ±s
dB±θ
ds

gζζ (232)

t±3 = −ξ±s B±θ ds
dgζζ
ds

(233)

t±4 =
dξ±θ
dζ

B±ζ gss (234)

t±5 = −
dξ±ζ
dζ

B±θ gss (235)

t±6 = ξ±θ
dB±ζ
dζ

gζζ (236)

t±7 = −ξ±ζ
dB±θ
dζ

gζζ (237)

t±8 = ξ±θ B
±
ζ

dgss
dζ

(238)

t±9 = −ξ±ζ B
±
θ

dgss
dζ

(239)

t±10 = − 1

2g
ξ±θ B

±
ζ gss

dg

dζ
(240)

t±11 =
1

2g
ξ±ζ B

±
θ gss

dg

dζ
(241)

t±12 =
1

2g
ξ±s B

±
θ gζζ

dg

ds
(242)

We first consider an interface which is a perfectly axisymmetric torus. Note that

in this specific case, the terms t6, t7, t8, t9, t10 and t11 vanish since the interface is

symmetric in ζ. Here t2 is also equal to zero, for reasons explained further on in

this paper. Figure 33 shows the amplitude of the 5 different other terms. We see, as

expected, that the terms implying a derivative of ξ are the 3 dominant ones. Note

that every time we are plotting results in a semi-logarithmic scale, we have taken

the absolute value of the terms. Now, if we study the impact of the 3 dominating

terms around the zero magnetic shear point, we see that the sum of t1, t4 and t5
goes to zero when we come close to zero magnetic shear (figure 34). In that case,

the bθ expression is dominated by the t12 and t3 terms. Note that these 2 terms are

the one implying derivatives of the metric in the normal direction. We recall here an

important assumption we have made before. To obtain the covariant basis vector,

we needed to define the derivative of Rmn and Zmn with respect to s. We decided to

take ∂Rmn/∂s = Cmn and ∂Zmn/∂s = Dmn, where the Cmn and Dmn are constants,
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Figure 33: Amplitude of the different terms in the b expression, in the

case of a toroidal perfectly axisymmetric surface

Figure 34: Amplitude of the different terms in the b expression, in the

case of a toroidal perfectly axisymmetric surface, for a displacement ξ

applied to a point close to zero magnetic shear
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because we expected the interface deformation to grow linearly while increasing the

radius. If, in contrast, we simply make the assumption that the metric is constant

as s increases, i.e. that ∂Rmn/∂s = ∂Zmn/∂s = 0, the terms t3 and t12 cancel out,

and we are left only with the terms implying derivatives in ξ, whose sum goes to

zero when we approach the point of zero magnetic shear.

Another hypothesis we had to make was to define the variation of the magnetic

potential f± as a function of s. We recall here that

f± = C±ΘΘ + C±z Z +
∑

f±mn sin(mθ − nζ) (243)

where CΘ and Cz are constants. As the pressure is constant within a definite plasma

volume, we made the hypothesis that ∂f±mn/∂s = 0 inside a plasma region. Thus

∂B±/∂s = 0. That is why the term t2 = 0.

If we apply a deformation, we get results close to the one obtained for an

axisymmetric toroidal surface. Note that if we consider a deformed interface, the

terms t6, t7, t8, t9, t10 and t11 are no longer equal to zero. But, if we consider a

deformation as defined in 227, we realize that the contribution of these 6 terms is

purely imaginary at the point of zero magnetic shear where the displacement ξ is

applied. We are then left just with a situation where we need to compare the impact

of the 3 terms involving the ξ derivatives, the terms t3 and t12 and the curvature

term.

7.9. Dominant terms in the δ2W expression for points close to zero magnetic shear

Figure 35 shows the contributions of all the terms for a perfectly axisymmetric torus,

in the case where the outside pressure is equal to the inner one diminished by 30%,

and when the displacement is extremely local. We see that the 3 terms involving

the ξ derivatives dominate generally, but that when we come close to zero magnetic

shear, the sign of the δ2W expression is given by the curvature term. The impact of

the t3 and t12 terms is smaller than the curvature term. Figure 36 shows a zoom for

a region close to zero magnetic shear. Let us now study how close to the point of

zero magnetic shear, the curvature term starts being dominant. Figure 37 shows for

which δθ = θ− θminshear the curvature term start dominating, for different K values,

where K is defined through the kθ and kζ expressions (taking ε = 1):

kθ = (Bζg
ζζ +Bθg

θζ)K (244)

kζ = (Bθg
θθ +Bθg

θζ)K (245)

On figure 37, we see that, the bigger the K value, the closer we need to go to the

zero shear point to have the curvature term dominating. The relation between δθ

and K is a straight line in a log/log scale. We can thus say that the system is

more stable for bigger K. Figure 38 shows the same relation between δθ and K,
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Figure 35: Magnetic and curvature terms in the second energy variation

expression, in the case of a toroidal perfectly axisymmetric surface

Figure 36: Magnetic and curvature terms in the second energy variation

epxression, in the case of a toroidal perfectly axisymmetric surface, for

points close to zero magnetic shear
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Figure 37: θ value at which the curvature term starts dominating over

the magnetic term, for different K values, in the case where the interface

is a perfectly axisymmetric torus

in the case where the surface is a deformed torus with R01 = −Z01 = 0.7 · 10−2,

R21 = Z21 = 0.7 · 10−2. The toroidal radius is given by R0 = 1.0 and the poloidal

radius R1 = 0.2. We see again that the relation between δθ and K is a straight line if

we use a log/log scale. δθ decreases from a factor 10 when K increases from a factor

102. Further, we note that for a given K, we need to go much closer to the point of

zero magnetic shear than in the case when the interface is a perfectly axisymmetric

torus, to have to curvature term dominating. Thus, the stability of the interface,

close to zero magnetic shear, depends both on the shape of the interface and on the

amplitude of the displacement derivatives.



7.10 Stability and pressure jump 60

Figure 38: θ value at which the curvature term starts dominating over the

magnetic term, for different K values when the interface is a deformed

torus with R01 = −Z01 = 0.7 · 10−2, R21 = Z21 = 0.7 · 10−2 and with

R0 = 1.0 and R1 = 0.2.

7.10. Stability and pressure jump

We finally study the impact of the pressure jump on the stability. We consider an

interface with R01 = −Z01 = 0.5 · 10−2, R21 = Z21 = 0.5 · 10−2 and with R0 = 1.0

and R1 = 0.2. Figure 39 shows for which θ values the system starts being unstable

for different pressure variations at the interface. We see that the bigger the pressure

jump (on the figure, -100% signify that the outside field is zero while 0% means

that the outer field is equal to the inner one), the more unstable the plasma is.

This is true because we consider points located away from the vertical axis of the

torus. If we were studying points closer to the central axis where the curvature term

is stabilizing, the conclusion would be the opposite. Note that the discrete points

relating ∆p to the θ values at wich the system starts being unstable are pretty

well fitted by a second degree equation. This might be due to the fact that ∆p is

proportional to JB2K.
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Figure 39: θ value at which the curvature term starts dominating over the

magnetic term, for different pressure variations ∆p, when the interface is

a deformed torus with R01 = −Z01 = 0.5 · 10−2, R21 = Z21 = 0.5 · 10−2

and with R0 = 1.0 and R1 = 0.2.
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8. Conclusion

The study presented in this paper is part of a more general project on constructing 3-

D MHD equilibria, in a way fully compatible with the existence of chaotic magnetic

fields. One crucial point in this model is establishing the existence and stability

of good magnetic surfaces with irrational rotational transform that can sustain a

pressure jump. Though the existence of surfaces that satisfy force balance is quite

well established [2], the question of stability to displacements of the interface still

had to be investigated. In this study, we adapted a theory developed by Bernstein et

al [4] for high-n MHD stability at an interface between a vacuum magnetic field and

a field-free plasma to the problem of general fields. We computed the second energy

variation for a plasma interface at equilibrium and showed that the equilibrium was

stable to displacements localized about most points on the surface. We then focused

on the stability at an interface for points close to zero magnetic shear, where the

magnetic term and the curvature term start competing. Only at this kind of points

can the equilibrium become unstable. We found a simple sufficient condition for

high-n interface stability to surface displacement: the interface is stable if all points

of zero magnetic shear have favorable curvature.

We implemented the theoretical results on a test case by modifying McGann’s

PJH code. We showed the influence of the different terms in the energy variation

equation and studied when the curvature term starts dominating over the term due

to the magnetic field variation. We showed that the system was more stable when

the displacement derivatives were big and gave a relation between these derivatives

and the point at which the second variation of the energy starts being negative.

We thus got a better understanding of the stability to displacements of a plasma

interface.

This multiple relaxation region MHD model raises a number of questions and

there are a few subjects related to this work that should be further investigated.

One example on which research has been done recently is the study of the maximum

pressure jump an interface can support before being destroyed by instabilities and

chaos. Another field of investigation, suggested by Hole [30], is to explore the use

of the double Beltrami model [18]. This model has been shown to be useful for

describing the phenomenology of the pressure pedestal in H-mode tokamak discharge

[19]. It is also needed to push this research further to find an analytic stability

criterion in cases where zero shear points have unfavorable curvature.
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10. Annexes

10.1. field-line curvature vector

Let us prove that the field-line curvature vector is perpendicular to the magnetic

field. We use the gradient identity

B ·∇B =∇B
2

2
(246)

And rewrite it using 146

Be‖ ·∇Be‖ =∇B
2

2
(247)

B2κ+ e‖ · (∇
B2

2
)e‖ =∇B

2

2
(248)

B2κ = (I − e‖e‖) ·∇
B2

2
(249)

And finally

κ =
1

B2
·∇⊥

B2

2
(250)

which proves that κ ·B = 0.

10.2. Green functions, detailed calculus

Let start from the expression of b

b(r) = − (∇×+µ)

∫
S

Φ(r, r′)(n(r′)× b(r′))dS(r′)

− ∇
∫
S

Φ(r, r′){B(r′) ·∇ξ(r′)

+ ξ(r′)n(r′) ·∇× [n(r′)×B(r′)]}dS(r′) (251)

and consider the Fourier transform of b

b(r) =

∫
bke

ik·rdk3 (252)

and of ξ

ξ(r) =

∫
ξke

ik·rdk3 (253)

We also use the particular solution to the Helmoltz equation

Φ1(r, r′) =
−iµ
4π2

∫
d3k

eik·(r−r′)

k2 − µ2
(254)
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Inserting 252, 253 into 251 and using the Fourier form of the Green function 254,

we get ∫
bke

ik·rdk3 = − (∇×+µ)

∫
dk3

∫
S

1

4π2

∫
d3k′

eik
′(r−r′)

k′2 − µ2

(n(r′)(r′)× bkeikr′
)dS ′

+ ∇
∫
S

iµ

4π2

∫
d3k′

eik
′(r−r′)

k′2 − µ2

∫
dk3{B(r′) ·∇ξkeik·r

′

+ ξke
ik·r′n(r′) ·∇× [n(r′)×B(r′)]}dS ′ (255)

We then rearrange the terms to isolate the surface integral∫
bke

ik·rdk3 = − 1

4π2
(∇×−µ)

∫
dk3

∫
d3k′

1

k′2 − µ2

· (n(r′)× bk)eik
′r

∫
S

ei(k·r
′−k′r′)dS ′

+∇ iµ

4π2

∫
d3k′

∫
dk3 1

k′2 − µ2
[iB · kξk

+ ξkn ·∇× (n×B)]eik
′r

∫
S

ei(k·r
′−k′r′)dS ′ (256)

We notice that the surface integral is nothing but the definition of the delta function

to within a factor.∫
S

ei(k·r
′−k′r′)dS ′ = δ(k − k′) (257)

Thus, replacing 257 in 256, we finally get∫
bke

ik·rdk +
1

4π2
(∇×+µ)

∫
d3k

1

k2 − µ2
(n× bk)eik·r

=∇ iµ

4π2

∫
d3k

1

k2 − µ2
[iB · kξk

+ξkn ·∇× (n×B)]eik·r (258)

We thus find an expression relating bk to B and ξk which can be further developped

by expanding B about a line of zero shear


